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Sensitive Dependence to Parameters, Fat Fractals,

and Universal Strange Attractors

J. Doyne Farmer

Center jor Nonlinear Studies, MS B258, Los A!amo8 National Laboratory,

Los Alamos, New Alezico 87545 . .

(May 1984)

There are many nonlinear differential equations fo” which two different
types of behavior, such as chaos and periodicity, art interwoven in a com-
plex and intricate manner, so that the bifurcation parameters form a “fat
fractal”. The result is that statistical averages vary wildly with parame-
ters and, strictly speaking, prediction becomes impossible even in the sta-
tistical sense, (For example, climate, as well = weather, is unpredictable.)
There is, however, order in Lhis unpredictable behavior, which can be
described by a universal strange attractor of the renormalization transfor-
mation.
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Introduction

Differential equations and their discrete counterparts, mappings, occur in almost
every branch of science. The generic name for this type of r-n~thematical model is
d~namical s~stern. Loosely put, this is nothing more than a rule stating how some
quantity, or set of quantities change, usually with time. A familiar example is INewton’s
law; ~ = m if describes how the position of an object varies in time. The force F gives
the rule, the acceleration z relates this rule to position, and the mass m is what is
called a p~rametcr of the equation, i.e. something that stays constant for an~ given
application, but might vary from case to case. Dynamical systems can be divided into
two broad categories, linear and nonlinear. Although most physical problems are most
accurately modeled by nonlinear equations, linear models have been more commonly
utilized. The reason is expedience; linear systems can be put in a fern) in which each
variable behaves independently of the others, and are thus solvable. In contrast, there
is no systematic theory for solving nonlinear systems.

Even though it is generally not possible to solve nonlinear equations, it is possible
to simulate their behavior on a computer, and by doing this in recent years considerable
progress has been made toward undemanding their qualitative properties, In very gen..
eral terms, the resalts of some of these investigations can be summarized ZMfollows:

First, the properties of nonlinear equations ale dramatically diflerent than those of
linear equations. In particular, they are capable of several different varieties of “sensi-
tive” behavior. The most famous of these is chaos, also called sensitive dependence to
initial conditions, conjectured by Poincare [1] at the turn of the century, and
developed by Lorenz [2] in the early 60’s. Chaos has received a great deal of attention
in recent years, since it explains how chaotic, apparently random be!lavior can be gen-
erated by a physical system following deterministic laws, The basic discovery is that
for some ncmlinear dynamical systems errors in initial measurements grow geometrically,
rather than arithmetically in time. Small changes in initial values producr very large
changes at a later time, and the detailed beha~’ior of the system becomes unpredictable
in anything other than a statistical sense. Chaos is believed to be the underlying cause
of many different phenomena that seem to contain random or unpredictable elements,
such as the weather. It puts an inherent limit on our ability to predict the future, sillcc
with initial measurements o]’ only finite accuracy, it is impossible to predict the details
of future behavior.

‘l’he long-time behavior of a dynamical system, after “transients” have been
allowed to die out, is often more important than the sort-term behavior. In ~yl]~]l)i~ill

systems with some form of friction, or dissipation, initial co]. ditions are ‘attractrd” to
some subset of all posslblr values, called an ultractor. For example, tile motion of a
m= on the end of a spring will eventually damp ouf, approacliing a state of rest c:lllrd
a fixed point attractor. A nonlinear oscillator (with an energy source) can have nlorc
complicated attractors, such M a limit cycle attractor; this rncans that after all tllc trnl)-
slents die out, motion always apprmwllm a periodic cycle that is the sam~ r~gnrdlt’ss of
the particular inltlal conditions. A metronome, the heart, or the feedback proclucccl
when a microphone is held up to a speaker ar~ all exnmplcs of limit cycle attrnctom. A
more complicated kind of attractor, callt’d a qtrangc attractor, appears whel] nlotiol] on
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an attractor is chaotic. This is a gmd example of the concurrence of order and chaos;
the attractor represents a restriction of the motion, a reduction of possibilities; within
the restrcitions imposed by the attractor, however, motion is chaotic.

A second result that was quite surprising is the existence of universal properties of
nonlinear equations. Even though there are an infinite number of different nonlinear
equations, many of them behave in emential!y the same wav. Perhaps the first instance
of this was discovered by Metropolis, Stein, and Stein [3] in the early seventies. on. h
a~pect of this work was substantially expanded by Feigenbaum [4], who showed that one
of the most common ways to make a transition from predictable to chaotic behavior
always occurs in exactly the same way. Universality implies that even though the
behavior of nonlinear equations may be quite complex, there are orderly patterns to the
way in which this complex behavior occurs, common to all equations in a given class.

Sens:tive Dependence tm Parameters

The centrai purpose of the work outlined here is to discuss a lesser knwn “sensi-
tive” property of nonlinear systems, called serzsitive dependence to parameters, and to
demonstrate some of its universal properties. Roughly put, sensitive dependence to
parameters occum when a dynamical systcm’s behavior changes wildly as a parameter
(such as the mass m in F = m R) is varied. Thus, for example, at one parameter value
a system might be chaotic, at another nearby value periodic, anti then again chaotic,
etc. The remarkable =pect is that arbitrarily close to every parameter value where
there is chaos, there is another parameter value where there is a stable periodic orbit.
At the same time, a finite fraction of parameter values generate chaos. In fact, the
parameter values where the behavior is changing, or the tnfurcation parameters, con-
sume a finite fraction of all possib!e parameter values, equal to the set of chaotic param-
eter values. The practical implications for prcdickion are bad, worse even than for chaos:
For chaos, .he details of future behavior are unpredictable, but for sensitive dependence

to parameters, prediction is not even possible in a statistical sense, since the average
behavior when the system is chaotic may be completely diflerent from its behavior when
it is periodic.

This phenolllcnoll was originally recognized by Edward Lorenz, a meteorologist,
V!1O described it in a little known paper called “On Determining the Climate from the
Go’~erning Equations” [3]. The has;c point of this paper is that the climate, which is an
average or statistical property of the equations that govern the weather, may bc
inherently ~inpredict~ble due to sensitive dependence to parameters. A discussion of tl)e
example USMI by Lorenz will perhaps help to make this clearer.

Since the equations that really describe the weather are quite complicated, and
extremely di~cult to deal with, Lorcnz chose to study a very simple nonlinear equation,
called the “logistic map”, which may thought of as a metaphor for the weather.

2,+1 = rz~(l -2A). (1)

Here z is a number between zero and one, r is a parameter value between zero and
four, and k Is a Iabei that plays the role of time. For any given Initial value ZO and a

flxcd value of r thh equation can be used to generate a new value z,, which can In turn
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Figure 1.
An example of a very simple nonlinear dynamical system,
given by Eq (l).

be used to generate z ~, ad inunilurn. The sequence r~ might describe some property of
the weather, such as the temperature oxi successive days, and r might describe a fixed
property, such = the latitude. Of course, this equation is much too simple for a realis-
tic model ~f the weaLher, but Lorenz’s purpose was to provide an illustration; if this
very, very simple equation can do unpredictable, complex things, then complicated equa-
tions such as those that actually underly the weather might also be capable Gf thr’ same
typ~ of behavior.

Lorenz demonstrated that there are many valu~~s of r where the sequence Zk is
chaotic, i.e., the values of Zk appear to hop around in a random manner, never settling
down, At other values of r , the sequence z& is asymptotically periodic, or ~n other
words, the values of z~ eventually begin repeating themselves, settling down inLo an
unvarying pattern in which z periodically changes betw~en fixed values (a limit cyc]c
attractor). Lorenz demonstrated that arbitrarily close to any value of r generating
chaos, there is another value of r generating IJeriodicity. F~lrthermore, for chaotic
parameter values the average ‘/alue of z may take on one value, while at the arbitrarily’
nearby periodic values, tl)c average may be quite diflerent, The result is that unless r is
known with infinite accuracy (which it never is), the average value of z is unpredictable,
since even an infinitesimal change in r might produce a substantial change in the aver-
age. If z represents temperature, tl)en ti]e average temperature would I)e unprcdictablc,
Identifying the average temperature as a feature of climate, wc sec that the the climate
in this case is unpredictable in pn”nciple.



Fat Fractd.a

The fact that there are periodic parameter values arbitrarily close to chaotic
parameter values has led many people to assume that chaos must be unlikely to occur in
such equations, and that the erratic behavior seen in computer experiments must be an
artifact of the computer errom. This is in fact wrong. As was originally demonstrated
by Lorenz [5], and lately proved by Jakobsen [6], the chaotic parameter values consume
a finite fraction of the values of r . To better understand how this seemingly paradoxi-
cal behavior occurs, let us first construct a hypothetical set with analogous properties:
Delete the middle third of a line segment extending from O to 1, leaving two line seg-
ments. Now delete the middle third of each of these, leaving four segments. Continue
this process ad inwnitum, as shown in Figure 2. What is left is called a Cantor set, and
has some very remarkable properties. First, thele is a gap arbitrarily close to any point
in the Cantor set. This implies that the Cantor set is its own boundary. Second, the
points in the Cantor set cannot be counted, even though when “added up”, their total
length is zero. In other words, picking a point at random, ~he probability that it lies in
the Cantor set of (a) is zero. Thus, this can be called a “thin” Cantor set.

It is possible to “fatten” this Cantor set by changing the scaling between the gaps,
as shown in Fig. 2(b), At the second stage of construction, delete the middle 1/!2 rather
than the middle third of each segment, and at the third stage delete the middle 1/27 of
each segment, and so on. ‘i’he result is that this new “fat” Cantor set has length greater
than zero; if a point is picked at random, there is a nonzero chance that it will be one of
the points in the fat Cantor set. This is true even though there are still holes arbitrarily
close to any point in the fat Cantor set, so that the fat Cantor set is still its own

(b)

Figure i?.
Two examples of Cantor sets, as described in the text. The
one shown in (a) is “thin”, and the one shown in (b) is “fat”.
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boundary.

The set of parameter values where chaos occurs in the logistic map is also a fat
Cantor set; think of the holes as periodic vafues of r, and the points in the fat Cantor
set as the chaotic values. The set of bifurcation parameters is just the set of boundary
points, and is equal to the set of chaot!c values. Thus every parameter value causing
chaos is also a bifurcation parameter. Note: Since a Cantor set is a very specific thing,
the more general term Jractal [7] is often used to discuss objects of this type. Like Can-
tor sets, fractals can be either fat or thin.

In examining a fat fractal such as the one of Figure 2, even though there are gaps
arbitrarily close to every point, only a few of them are visible, The pen used to draw
the figure has a finite width, and in any case your eyes have limited resolution, so that
the smallest gaps are obliterated. The SIZCof the fat fractal that you actually see is
larger than the true size. If somehow the pen were finer and your eyes were better,
more of the gzps would become visible, and the apparent size would decrease to reach a
value closer to the true value. The apparent size thus depends on the scale of resolu-
tion.

The same is true of the set of chaotic parameter values of the logistic map. One of
the new results being reported here [8] is that the the apparent size of fat fractals of this
type chan~es as

L(f) =L(o)+kc~ (2)

where L (t) is the total length measured using resolution t, and k and B are constants.
(This relation is only generally Valid for small (.) The exponent B provides a means of
quantifying the extent to whish something is a fat fractal. If P is close to zero, then the
area only changes slowly with changes in the resolution, and the fractal property is very
strong, whereas if @is large, then the fractal property is weak. B can in fact be used to
de-wze sensitive dependence to parameters. Specifically, sensitive to parameters occurs
when when @< co, i.e., when there is a fat fractal in parameter space. This same pro-
perty has recently been shown to hold for other types of equations as well [~1.

Thus far, we have been ~uming that the motion we are discussing is fully deter-
ministic, i.e., there arc I.o external random influences acting on the system. In real phy -
sicai problems, however, there are always fluctuating, unknown, apparently random
external influences at work. 13ven though these effects may be very small, in the c~~e of
sensitive dependence to parameters, they play an important conceptual role. In particu-
lar, w demonstrated in reference [10], random external fluctuations wipe out all the
stable periodic orbits below a certain minimum size, depending on the amplitude of the
external influences. ) The result is that external random fluctuations actually make it
possible to predict statistical averages, since they smooth out all the complicated
behavior associated with sensitive dependence to parameters.

The complication introduced by sensitive dependence to parameters, then, is that
the phenomena observed depend in an essential way on the level of the external flucta-
tim.s. In the presence of sens!tive dependence to parametem two experiments done wit]l
diflerent levels of external lluct~ations will observe diflerent reslllts, with the iess noisy
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experiment observing more structure and more bifurcations than the other. Strictly
speaking, neither of them is “right”, since another experiment with an even lower level
of fluctuations will always observe more structure. The amount of new behavior that
emerges as the level of fluctuations is lowered can be predicted from knowledge of the
exponent B of Equation (2). Thus B provides a means of summarizing the effect of exter-
nal fluctuations on sensitive dependence to parameters. More detailed predictions can
be made from the properties of the appropriate universal strange attractor, discussed
below.

Universal Strange Attrmct.arn

In spite of all this pessimism concerning predictability, the logistic equation, a~~ -1’
other equatians of the same type, have some very orderly properties, one of whici~
discovered by Metropolis, Stein, and Stein [2]. In particular, the stable periodic oibits
discussed above can be labelled according to whether each step of the orbit goes to the
left or right of z = 1/2. (z = I/2 is called the cn”tical point, and is special because it is
the point that gives rise to the maximum value.) A period four orbit, for iristance,
might be Iabelled MRLR, to indicate that starting in the middle, z first goes to the
right, then to the left, then to the right, and back to the middle. An alternative period
four orbit would be MRLL. It turns out that only certain combinations are al~owed;
MLRL, for example, is not possible. Furthermore, they showed that as the parameter r

is increased, stable periodic orbits appear in a certain manner that can easily be
predicted in terms of a simple rule.

The remarkable aspect is that this rule is universal, i.e. it is the same for any map
of the same basic type as the logistic equation. For example, z~+l = r sin TZA is another
map that is similar, but not exactly the same, = the logistic map shown in Figure 1.
The ordering of the stable periodic orbits is exactly the same as that of the logistic map,
and can be predicted according to the same rule. They called this universal sequence of
stable periodic orbits the LT-sequence. Although these maps may seem far removed from
reality, in fact the existence of the U-sequence has now been verified. in experiments on
chemical reactors [11].

This concept of universality was extended by Mitchell Feigenbaum [5], who showed
that for a certain subset of the U-sequence, not just the order, but also the spacing of
the parameter values was the same for all maps of the same basic type as the logistic
equation, The subsequence investigated by Feigenbaum, called the period-doubling
sequence, is special because it initiates the transition to chaos. What he showed is that
number describing the spacing of the parameters for the period-doubling sequence is the
same for all maps of this general type. Feigenbaum’s predictions have now been verified
for many ditTerent kinds of physical phenomena.

The existence of the power law behavior given in Equation (2) suggests that the
scaling properties are of the right kind to extend Fcigenbaum’s theory to the whole LJ-
sequence. Furthermore, preliminary results suggest that the number p obtaind is the
same in each case, although it should be emphasized that as yet these results are incon-
clusive. These ideas have been worked out in more detail [12] for a similar kind of non-
linear equation, called a circle map, that has another type of transition to chaos.



Building on previous work [13,14 ],wehave shown that the sequence of periodic orbits
causing sensitive dependence to parametem lie on a universal strange attractor in
parameter space. In other words, there is a geometrical object (an attractor) defining a
rule that allows the order and spacing of the periodic orbits to be predicted. The fact
that this attractor is strange (or chaotic) means that the spacing is very sensitive to the
value of parameters. The fact that it is universal means that all nonlinear mappings of
this type are described by the exactly the same strange attractor. Another approach to
different aspects of this same problem has also recently been proposed by Felgenbaum
[15]; as yet it is unclear how these two different approaches are related to each other.
We believe that our approach can also be extended to unde~tand the U-sequence dis-
cussed above.

Concludon6

Thus, even though many nonlinear systems exhibit complicated behavior, we are
finding that in many cases there is order underlying this complicated behavior. One
example of this is sensitive dependence to parameters, which happens when the parame-
ter values for phenomena of one type (e.g chaos) form a fat fractal. Although on the
surface this behavior is very complicated, such fat fractals have well-defined scaling pro
perties. In some cases we have been able to show that there is a sense in which all frac-
tals in a given class are the same, a sense which can be made precise in terms of a
universai strange attractor. Such universal strange attractors provide us with a means
of classifying behavior, by stating in a precise manner an aspect in which two otherevise
dillerent nonlinear equations are alike. The fact that so far only a few fundamentally
different type of behavior have been seen, with only a few underlying universal strange
attractors, gives hope that it may be possible to group the behavior of nonlinear equa-
tions into a finite number of diflerent categories. The universal strange attractor makes
explicit the way in which the members of each category are the same. Although
phenomena such as sensitive dependence to initial conditions and sensitive dependence
to parameters imply lirr,its to prediction, by exploiting the order stemming from their
deterministic origins we can at lezst approach these limits.

This work was partially supported by the Air Force Office of Scientific Research,
under Grant Number AFOSR-84-OO017.


